Isoprenoid requirement for intracellular transport and processing of murine leukemia virus envelope protein.

نویسندگان

  • J H Overmeyer
  • W A Maltese
چکیده

Lovastatin blocks the biosynthesis of the isoprenoid precursor, mevalonate. When Friend murine erythroleukemia (MEL) cells are cultured in medium containing lovastatin, the precursor of murine leukemia virus envelope glycoprotein (gPr90env) fails to undergo proteolytic processing, which normally occurs in the Golgi complex. Consequently, newly synthesized envelope proteins are not incorporated into viral particles that are shed into the culture medium. gPr90env appears to be localized in a pre-Golgi membrane compartment, based on its enrichment in subcellular fractions containing NADPH-cytochrome c reductase activity and the sensitivity of its carbohydrate chains to digestion with endoglycosidase H. Arrest of gPr90env processing occurs at concentrations of lovastatin that are not cytostatic, and the effect of the inhibitor is prevented by addition of mevalonate to the medium. The low molecular mass GTP-binding proteins, rab1p and rab6p, which are believed to function in early steps of the exocytic pathway, are normally modified posttranslationally by geranylgeranyl isoprenoids. However, in MEL cells treated with 1 microM lovastatin, nonisoprenylated forms of these proteins accumulate in the cytosol prior to arrest of gPr90env processing. These observations suggest that lovastatin may prevent viral envelope precursors from reaching the Golgi compartment by blocking the isoprenylation of rab proteins required for ER to Golgi transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of murine leukemia virus envelope protein (env) processing by intracellular expression of the env N-terminal heptad repeat region.

A conserved structural motif in the envelope proteins of several viruses consists of an N-terminal, alpha-helical, trimerization domain and a C-terminal region that refolds during fusion to bind the N-helix trimer. Interaction between the N and C regions is believed to pull viral and target membranes together in a crucial step during membrane fusion. For several viruses with type I fusion prote...

متن کامل

Mutational analysis of N-linked glycosylation sites of Friend murine leukemia virus envelope protein.

The roles played by the N-linked glycans of the Friend murine leukemia virus envelope proteins were investigated by site-specific mutagenesis. The surface protein gp70 has eight potential attachment sites for N-linked glycan; each signal asparagine was converted to aspartate, and mutant viruses were tested for the ability to grow in NIH 3T3 fibroblasts. Seven of the mutations did not affect vir...

متن کامل

Intracellular transport of the murine leukemia virus during acute infection of NIH 3T3 cells: nuclear import of nucleocapsid protein and integrase.

The entry and intracellular transport of Moloney-murine leukemia virions inside mouse NIH 3T3 cells have been followed by electron microscopy techniques. Five viral proteins--matrix (MA, p15), capsid (CA, p30), nucleocapsid (NC, p10), integrase (IN), and the envelope glycoprotein (SU, gp70)--were located by immunolabeling using gold probes. After entering the cells, viral particles were frequen...

متن کامل

The role of envelope glycoprotein processing in murine leukemia virus infection.

The murine leukemia virus envelope protein is synthesized as a precursor molecule, Pr85env, which is proteolytically cleaved at an arginine residue to produce two mature envelope proteins, gp70 and p15(E). The results presented here indicate that mutation to lysine of the arginine found at the envelope precursor cleavage site results in a precursor which is cleaved with an efficiency at least 1...

متن کامل

Glycosylation and intracellular transport of membrane glycoproteins encoded by murine leukemia viruses. Inhibition by amino acid analogues and by tunicamycin.

Addition of asparagine-linked oligosaccharides to nascent murine leukemia virus (MuLV)-encoded membrane glycoproteins was inhibited either completely by tunicamycin or specifically at Asn-X-Thr glycosylation sites by incorporation of the threonine analogue beta-hydroxynorvaline. In conditions of partial analogue substitution, a series of subglycosylated components is formed which are related by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 31  شماره 

صفحات  -

تاریخ انتشار 1992